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ABSTRACT
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THE EXISTENCE OF EIGENVALUES EMBEDDED IN THE CONTINUOUS
SPECTRUM OF ORDINARY DIFFERENTIAL OPERATORS

M. S. P. Eastham and J. B. McLeod

1. Introduction
The purpose of this paper is to answer two questions raised by
W. N. Everitt concerning the spectrum g associated with the differential
equation

vy (x) + {x - a(x)}y(x) = 0 (0 < x <o) (1.1

and the boundary condition

y(0) cos o + ¥'(0) sina =0 , (1. 2)

where q(x) is real-valued and continuous and « is a real constant. We
introduce the usual division of e into the point, continuous, and point-

continuous spectrum:

c =Pr UCse UPCs
a a @ a

[1, section 43; 4], and since PCcra is our concern in this paper, we

repeat the definition that PCo consists of those eigenvalues in Ua
a

| : which are not isolated points of L

If ge Lp(O,oO) for some p >1, itis well-known that 1

Ce U PCo = [0, »)
@ @

(1o, p. 112, Theorem 25] and that PCo is empty if p=1 (see [8] for

references). Specific examples have been constructed which show that
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PCo-Q is not necessarily empty when p > 1 and these are described later
in this section. The questions raised by Everitt [8, section 1, remark 7]
are whether PC(ra can contain a countably infinite number of points and
whether PCUQ is bounded above when p >1. We answer these questions

in the following theorem.

THEOREM. Let {Xn} (n=1,2,...) be any sequence of positive

real numbers. Then, given p> 1, there exists a real number o and a

real-valued continuous function g e Lp(O,oo) such that PCo-a for (1. 1)-

(1. 2) is precisely {Xn} (=), Zue)

Here {xn} is permitted to be either bounded or unbounded. Despite
the doubts expressed in [8, section 1] about the applicability of the in-
verse spectral theory of Gelfand and Levitan [9], we shall nevertheless
use this theory in the simplified form of Levitan and Gasymov [11] to
establish our theorem. We state the results that we need from [11] in
section 2 below and we prove the theorem in section 3.

The first general result on the nature of PCu-a was obtained by
Wallach [14] as follows.

Let

lim sup xlq(x)l < 90 (1. 3)
X = ©

and denote the value of the lim sup by k . Then PCca is bounded above

by k2 for all a .
Complementing this result, there are specific examples of q(x)
satisfying (1. 3), constructed by different methods, for which PCcra consists

al=




of a single point @ in (O,kz) for some « . Any q(x) satisfying (1. 3)
is of course in Lp(o,:c) (p > 1) . The first examples were given by
von Neumann and Wigner [13] and Wallach [14], the idea here being to
construct a differential equation (1.1), with X =, by calculating
y"(x)/y(x) for a suitable square-integrable y(x) . The asymptotic theory
of Atkinson [2;8] and the use of certain step-functions for q(x) [6;7] provide
further examples. The inverse spectral theory of [9] was first used to pro-
duce a single point p in PCca by Moses and Tuan [12] and again by
&Dhaudhuri and Everitt [4;8]. We refer to [5] and the references therein
for further related work on PCO’G :

It should be mentioned that none of the above examples produces
a value of p arbitrarily near to k2 in any sense, thc best being a
value near to 4n-2k2 [6] . This leads to the following open question.

(*¥) Let ¢ >0 be given. Is there a q(x) such that

lim sup xlq(x)i =k < w
X—> 0

2
and, for some a, PCoa contains a point W satisfying p > (1-g)k  ?

(The related result of Borg [3] should be noted, that if (1. 3) is replaced by

the condition that i

x la(tldt < k log x
0
for all sufficiently large x, then PCo—a is bounded above by kz, and the

result is best possible. However, the proof that the result is best possible

dnes not answer (%).)

;
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There is a second open question which arises out of the work in this

paper. It is not clear whether or not the g(x) which we construct to prove
our theorem satisfies (1. 3). However, as we shall point out in section 3,
the estimate (3.15) suggests that our q(x) does not satisfy (1. 3). We

therefore pose the following question.

(**) 1Is PCa-a necessarily a finite set of points when (l. 3) holds?
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were at the London Mathematical Society Symposium on Partial Differential
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2. Inverse spectral theory

We state here the theorem from [11] that we use.

INVERSE SPECTRAL THEOREM. Let p()\) be an increasing function

of X in (-w,) . Let the following conditions (a) and (b) hold.

(a) If fe LZ(O,m) has compact support and if

ks
[ E'mdem=o0
-0
where
o0
E()\) =f f(x) cos(xN \ )dx ,
0

then f=0 p.p.

(b) If




p(N) iy,

a(N\) = ¥ 2R (2.1)
p(N) -2m NX (A20) ,
then the function
A —
f cos(xNX Y do(\) = @, (X)
-0 A

converges boundedly to @ (x) in any compact x-interval as A - ©,

where @& (x) has M +1 locally integrable derivatives.

Then there is a number o and a function q(x) with M locally in-

tegrable derivatives such that p(}\) is the spectral function of (1.1)-(l. 2)

with this o« and q(x) .

The formulae in [11] from which « and q(x) may be determined are
as follows. Let
A

F(x,t) = lim [ cos(x\) cos(tN'X ) do(N) (2.2)

A—+00 00

and let K(x,t) be the unique solution of the integral equation

X
F(x,t) + K(x,t) + f K(x,s) F(s,t)ds =0 (0 <t<x) . (2. 3)
0

d
Then a(x) = 2 = K(x, x) (2. 4)

and a is determined by

cot @ = -K(0, 0)

The relationship between p(\) and L for the particular o and
q(x) given by the inverse spectral theorem, is, we recall, that ., con-

sists of those points in any neighbourhood of which p(\) is not constant.

He




Also, PCcra consists of those points of discontinuity of p(\) which are

not isolated points of o . ?
o]

In our construction, we choose p(\) to have the form

0 (A<0) ,

Pl = Ay (2. 5)

2w NN+ ), A BLY (P 0),
)\»-1< n n

A
n

where
(0 (\<0), '

H(\) = (2. 6)
1 (x>0) ,

and the an are positive numbers yet to be chosen. Here the xn are as

in the statement of our theorem in section 1, and the PCcra corresponding
to this p(A) is certainly precisely {xn} . We aim to show that, given
p =1, the an can be chosen sufficiently small to ensure that q(x), as
given by (2.4), is Lp(o,oo) . At this point we make the standing assumptions
that

a <1 forall n (2.7)
and

o0 oo o
z‘,an<w, 51‘ a N <. (2.8), (2.9)

Already (2. 8) is required for (2. 5) to make sense when {)‘n} is unbounded.
We have to check that conditions (a) and (b) in the inverse spectral

theorem are satisfied. Since an >0 in (2.5), it is clear that in (a) we

have E(\) =0 in (0,%), whence f=0 p.p. Also, by (2.1) and (2. 5),

(b) is certainly satisfied with M = 0 since (2.9) is assumed.

-6-
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The construction of q(x)
’ *

By (2.1), (2.2), (2.5) and (2. 8), we have
(3.1)

o0
F(x,t) = ) a_ cos(x \"_)‘:n) cos(t\/_fn)

n=1

To solve (2. 3), at least formally, we try

on
Kix, t) = Y A_(x) cos(t\/—):; ) (3.2)

n=1

(We note that it would also be possible to use the more explicit form

o0 o0
Kix, 8 = Ll rlcos(x \/—)\—;l) cos(t«f_):;) .

m=ln=1 7
On

but there appears to be no advantage to be gained by doing this.)

substituting (3.1) and (3.2) into (2. 3) and setting the coefficient of

cos(t'\/)\ ) equal to zero, we obtain
A, x I. X p 0
]( ) ]’ n( ) )

o0
8 cos(xn N ) AR A 321

that is,

1 e s

A (¥) {an $ In, n(x)} = -jzl A, (x) 1,, () - cos(x \/xn ) (3. %)
g (ER=RI e o)

where
x —— ————
Ij,n(x) - fo cos(s'\/)\j) cos(sN )\n yds (3. 4)

The equations (3. 3) form an infinite set of equations which are to determine

the An(x) .




To justify working with an infinite set of equations, we first con-

sider the truncated set of equations obtained by setting An =08 (ni= Nzl
N+2, ...) in the first N equations and treating these N equations as
equations for Al’ ey AN . This truncated set has a unique solution,

since it is standard that the integral equation (2. 3) has a unique solution

when we take

N
Fix, 1) = E a_cos(x \[Tn ) cos(t \/)\n Y 5
n=1
and we denote this solution by Af‘N) (=R N o (The AI(]N) are of

course functions of x .)

By (3.4), we have, for j #n,

e e s
[Ij’n(x)f = [-2- fo [cos{s(«f)\_n +\/)\j)} +cos{s(~/)\n-\ij)}]ds!
i
= " j
and so
|Ij,n(><)l§vn(1§j<°°, j#n) (3.5)
where
—_ =l
Y, = sup NEW -\[le . (3. 5
J#¥n

(N)

b the inequalities

Now we can deduce from the equations for A

N -1 -
AV < @ter )T 1AV sy e, N e

n, n




N
JaM) - ¥ 1A§N’1 :

~

j=1

Summing (3.6) over N we have
N

N
1AM < [ 3 8 v a0+ Y, e
0=l ne=]

’

and if we assume, as we may, that the a are chosen so that

I
iy £ (3.7)

S48

1

we have

(3. 8)

’

o0
s <23 a =c
= n
n=1

say, where C is finite by (2.8) and, of course, C is independent of

N and x . Substituting back into (3.6), we obtain

B )'1(0yn+1) : (3.9)

|A(N)| < (a
n T n, n

If we now let N -, for fixed n and x, the Bolzano-Weierstrass

theorem assures us that, at least through some subsequence of N,

0,
AT = A, (3.10)

say, and that An also satisfies the inequality (3.9). By the usual
diagonal process, we can choose the subsequence of N so that, as h
N - », (3.10) holds for all n, and we can now show that the An satisfy

’

the equations (3. 3). First, the infinite series in (3. 3) converges by virtue

e




(N) Thus (3. 3)

f (3. 9) (with An in place of An (3. B), (2. 8) and (3. 7).

)

makes sense. Next, given ¢ > 0, we can, by (3.9), (2.8) and (3.7),

find R sufficiently large that, for all N >R,

0 l

5 e
lAjl 5 €

(N) 1
IA] ' <Z€y i,
j=R

i

"

j=R
Thus, taking specifically the n-th equation in (3. 3) and using (3. 5), we

see that the difference between the right-hand sides of the equation and

its truncated form does not exceed

R
TRt <
_JIA. A].|+Yne 2y &

Hence the n-th equation in (3. 3) holds as

is sufficiently large.

if N
Thus we have proved that the

the limit of its truncated form as N —

as defined by (3.10), satisfy the equations (3. 3).

With K(x,t) now defined by (3.2), the convergence of the series
(N)), as are the formal manip-

is assumed by (3.9) (with An in place of An
is indeed the (unique) solution of

An’

ulations ieading to (3. 3). Thus K(x,t)

(2. 3).
It remains to show that

—_—

p
o K%, ) € 17(0,) ,

are chosen suitably. By (3.2), we have formally

(Seil)

at least if the an

(oo}
75 K%, %) = g,_l {Al‘q(x) cos(x Jx—n ) - A (x) Jx—n sin(xmf)\_n 1.

It is therefore necessary to obtain bounds on A;l(x) .

-10-




If we differentiate the truncated form of (3. 3), satisfied by the

Af]N), we obtain easily, bearing in mind (3.4) and (3. 8), that

N
o d (N
3 -
o L 00 g Ay cal

g

j#+n

i i'\/)\n B (3.12) @

-1 d (N)
{ LR
| 8, ¢ In, n(x)} dx An

(N)

Since (2.9) is assumed, the same type of argument that was used for An

N
now establishes that, for fixed n and X, —— A; )

converges through a
ax g g

}- subsequence of N which can be taken to be the same as before. If we

assume further that the an are such that

o0 o0
< w0 ) Iy
Zan A, < and ,_Janyn«/ el (3.13)
1 1
, q
then the same type of argument can also be applied to o An with
dx

a bound (which we do not need to specify) corresponding to (3. 9) and
which is independent of N and x . In passing, we note that, by part
(b) of the inverse spectral theorem in section 2, the convergence of the first

series in (3.13) implies that our g(x) is absolutely continuous in {0,2) .

It can be readily verified that the bound corresponding to (3. 9)

» which we obtain for e A(N)X from (3.12) is
| dx n
4 (N

= | 2 — i
e (X)if_ {an k% n(x)} {c;+c )yn+\!xn +C}, (3. 14)

’

where lz-Cl is the sum of the series (2.9). Thus, for any fixed n, the

N
seguence {a(—i-(— qu )(x)} is, as N - », uniformly bounded and

=]l=




o

equicontinuous for x in [0,), and so the sequence (or at least a

subsequence) converges uniformly as N- ® for x in any compact

interval. It follows that

L o
dx An (%) dx An(x)

and that the estimate (3. 14) holds for A;}(x) :

Now that (3.11) holds, we have, by (3.9) and (3. 14) (for A;l(x)) 5

o
d . =1 =1
a;- K(x, x) = C nz—:l {an +In’n(x)} (yn + \/)\n + Yn\/Tn+l) i
(3.15)
where C' is a constant. Also,
1 I
a_ +1 (x)=a +f cos (sN\_)ds
n 3 n 0
:<ar_]l+—-x»Ll ) e sin(2xN'\_ )
SR [ 2]
a . 4 )\n +-2—x
L=l
zz-(an o o (3.16)

provided that a < Z\/—):; » this being a further restriction on the a

only if lim inf xn =50

In (3.16), we use Young's inequality
n-> o

ab < ar/r + bs/s

’

-1 -1
where a >0, b >0, r>l, s>1, and r +8 =1, This gives

] D




a, + In, n(x) >

Y Y Sl/s a-l/r xl/s
2 n

r (3:07)

Then, by (2.4) and (3.15), q(x) isin LP0,w») if
o

f X-p/s{

0

1/r
l an (Yn +

T08

WAy N +1)}Pdx <0 , (3.18)

and this can be arranged by choosing, as we may, s sothat l<s<p
and {an} sufficiently small that the infinite series in (3.18) converges.
This completes the proof of our theorem.

In section 1 we raised the question of whether or not our q(x)
satisfies (1. 3). That it may not do so is suggested by (3.15) and (3. 16).
When x = al_\Il for a particular N, the term with n = N in the series in
(3.15) is, by (3.16), roughly of the size

X 1(~,,N+ \/)\N +YN\/xN +1) (3.19)

for large N . The factor multiplying x-1 in (3.19) is certainly unbounded
if {)\n} is unbounded, and it is also unbounded if {)\n} is bounded be-
cause then {yn} is unbounded by (3. 54).

On the other hand, granted the convergence of the series in (3.18),

/

-1
it is clear from (3.15) and (3.17) that q(x) = O(x S) as x = o . Thus,

-C
given c¢ <1, we can arrange that q(x) = O(x ') as x = ®

alBw
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